
Data-driven IoT Systems: Emerging Verticals, Challenges, and Opportunities –

An Edge-based View

Falko Dressler

Data-driven IoT Systems: Emerging Verticals, Challenges, and Opportunities – An Edge-based View2

From Edge to V-Edge

Virtualized Edge Computing

Data-driven IoT Systems: Emerging Verticals, Challenges, and Opportunities – An Edge-based View3

Falko Dressler, Carla Fabiana Chiasserini, Frank H. P. Fitzek, Holger Karl, Renato Lo Cigno, Antonio Capone, Claudio Ettore Casetti, Francesco Malandrino, Vincenzo Mancuso, Florian Klingler and Gianluca A. Rizzo, "V-Edge: Virtual Edge Computing

as an Enabler for Novel Microservices and Cooperative Computing," IEEE Network, vol. 36 (3), pp. 24–31, May 2022.

g-nodeB

g-nodeB

g-nodeB

g-nodeB

Core Router

Core Router

Core Router

back-end

and cloud

V-Edge with

Distributed Orchestration

resource

allocation and
optimization

Data-driven IoT Systems: Emerging Verticals, Challenges, and Opportunities – An Edge-based View4

◼ Federated approaches to the extreme

AI/ML and Virtualized Edge Computing

Data and/or

models

Data and/or

models

g-nodeB

Data and/or

models

Data and/or

models

Data-driven IoT Systems: Emerging Verticals, Challenges, and Opportunities – An Edge-based View5

◼ Logical resources from mobile users and infrastructure-based systems (e.g., edge servers co-

located with a gNB) are aggregated into clusters

◼ Multiple clusters are appropriately coordinated and microservices can migrate from one cluster

to another to optimize the service location

◼ Resource management is done by an orchestrator, which may interwork with others, controlling

neighboring clusters, to migrate services

V-Edge Architecture

Data-driven IoT Systems: Emerging Verticals, Challenges, and Opportunities – An Edge-based View6

V-Edge Substrate for Distributed Computing at the Edge

Model Splitting: Distributed Inference, Distributed Learning, and more

Data-driven IoT Systems: Emerging Verticals, Challenges, and Opportunities – An Edge-based View7

V-Edge Substrate

Inference Learning Computing…

Model Splitting

Data-driven IoT Systems: Emerging Verticals, Challenges, and Opportunities – An Edge-based View8

g-nodeB

g-nodeB

g-nodeB

g-nodeB

Model splitting

Early

exit

Layer N results

Data-driven IoT Systems: Emerging Verticals, Challenges, and Opportunities – An Edge-based View9

Machine Learning within the V-Edge

Heterogeneity: the Motivation for FL Variations

10

◼ Federated Learning (FL): with data

distributed across edge devices, we aim to

exploit their data and computational

capacity.

◼ For devices to share their learned

knowledge through models to the server.

◼ Classic FL involves strictly synchronized

model exchange, which is difficult

considering heterogeneity of:

◼ Data distribution

◼ Computational capacity

◼ Communication link throughput

Server

Device 1:
CPU clock: 2GHz
With GPU, RAM: 8GB
1022 samples

Device 2:
CPU clock: 800MHz
No GPU, RAM: 2GB
800 samples

LOS
LOS

Device 3:
CPU clock: 1.5GHz
No GPU, RAM: 4GB
3000 samples

blockage

Non-LOS

Uploading time: 5 s
Uploading time: 7 s

Uploading time: > 60 s

Data-driven IoT Systems: Emerging Verticals, Challenges, and Opportunities – An Edge-based View

11

◼ By relaxing strict synchronization cycles, we allow FL devices of various capability to upload model

upon completion of their training

Asynchronous FL

Mengfan Wu, Mate Boban and Falko Dressler, "Flexible Training and Uploading Strategy for Asynchronous Federated Learning in Dynamic Environments," IEEE Transactions on Mobile Computing, vol. 23 (12), pp. 12907–12921, December 2024.

Device 1

Device 2

Device 3

Device 4

Time spent on

communication

Time spent on training

time

Upload complete

Download complete

Server

Data-driven IoT Systems: Emerging Verticals, Challenges, and Opportunities – An Edge-based View

12

◼ Assuming FL devices know/predict the throughput of their links to the server, we set a range for

training process to be acceptable: [𝐸min , 𝐸m𝑎𝑥]

◼ Devices are aware of their training process and monitor the future link throughput within a time

span

Asynchronous FL with Resource Maximization

Always continue training
Upload if model transmission

time is minimal Upload model anywaysAction

𝐸min 𝐸max

Local

optimization

progress

Data-driven IoT Systems: Emerging Verticals, Challenges, and Opportunities – An Edge-based View

Data-driven IoT Systems: Emerging Verticals, Challenges, and Opportunities – An Edge-based View13

◼ Typical vehicular scenario

Training time vs. transmission time
11

Fig. 4: Histogram of training time and transmission time of
clients’ updates under difference scenarios.

mission time and increasing training time after enabling

flexibility is also confirmed by the average value. Besides,

we observe a reduction in communication resource usage,

which is computed by
m ·N u p d a t esP
T
t = 1

P
i 2 [N] ci

t

, where Nupdat es is

summed number of model updates of all clients. Specifically,

we achieve a reduction of communication resources (used

by the clients for uploading models to server) of 6.0%,

8.5%, and 4.6%, in three scenarios respectively. Such effect is

achieved by the generally reduced number of uploads (the

last k) of each client and also the summed number Nupdat e.

Equally as important, introduced flexibility results in the

average transmission time reduction by 12.7%, 5.6%, and

21.0%, respectively, for the three scenarios. Finally, owing to

the flexibility, the clients can spend additional time training

the models, resulting in increased computational resource

invested and thus 0.32% to 1.15% increase in averaged final

testing accuracy for learning MNIST, 1.5% to 4.5% increase

for learning CIFAR10, and 2.7% to 9.7% increase for learning

CIFAR100. We also provide the statistics of used resources

of CIFAR10 task in Appendix C Table 14. Details related to

testing accuracy are elaborated on in the following sections.

Learning M NIST: We show that in Table 7 and 8,

for learning MNIST in asynchronous FL, our solution

(exponential-decay weight design combined with flexible

training and transmission) outperforms other methods in

more that half of the different data distributions (in terms

of data std. and number of classes per client). Moreover,

our solution also performs the best in terms of the averaged

accuracy over all data distribution in each scenario. It is also

noticeable that CNN always performs better than MLP in

the same scenario (Link Profile 1 and Computation Profile

c).

TABLE 6: Comparison of Statistics of Time and Resource Usage
of FL clients in various Scenarios of Classifying MNIST

Average Trans-

mission Time
Communication Re-
source Usage

with
f.

with
unc.

w/ o

f.
with
f.

with
unc.

w/ o

f.

Link P. 1
Comp. P. c 17.8 18.1 20.4 0.312 0.323 0.332

Link P. 2
Comp. P. b 38.6 38.5 40.9 0.453 0.477 0.495

Link P. 3
Comp. P. a 22.9 22.8 29.0 0.309 0.327 0.324

Average Training

Time

Avg. Num. Optimi-

zation per client

with
f.

with
unc.

w/ o

f.
with
f.

with
unc.

w/ o

f.

Link P. 1
Comp. P. c 43.8 41.5 37.7 4388.8 4296.0 3919.0

Link P. 2
Comp. P. b 46.2 42.2 37.3 3398.9 3260.9 2948.1

Link P. 3
Comp. P. a 44.3 41.0 35.2 4231.0 4134.9 3525.0

Moreover, to investigate the effect of clients’ flexible

actions, we compare the performance of each method with

and without flexibility enabled, under different data dis-

tribution and environments. When learning MNIST either

with MLP or CNN, the method with flexibility outperforms

that without flexibility in 62 out of 72 comparisons.

One sample accuracy evolution of MLP learning MN-

SIT with Link Profile 3, Computation Profile a, and data

distribution std. 750 is plotted in Figure 5. Our method is

generally less effective during the starting stage of the learn-

ing process, especially when class imbalance is prominent,

having lower accuracies than others. Nevertheless, it is fast

to catch up and outperforms ours in 3 cases in the end.

Learning CIFAR10: We show in Table 9 the final ac-

curacy of learning CIFAR10 with CNN. When learning

CIFAR10 with relatively fast pace, extreme class imbalance

cause great fluctuation in the learning progress. Thus, we

only show the learning results with relatively balanced

data distribution with number of classes being 7 and 10
when learning CIFAR10 fast. We conducted experiments

with slow speed settings (computation profiles d, e, and f)

and longer time (8000 steps) to investigate the performance

of learning CIFAR10 under more unbalanced data distribu-

tions with number of classes available at clients being 4 and

7.

In slow learning settings, our solution outperforms the

other two methods. In fast learning settings performs worse

than using polynomial weight attenuation and better than

using data weight. Moreover, when comparing methods

with and without flexibility, we see that methods with flexi-

bility has a dominant advantage over those without flexibil-

ity in scenarios where link throughput varies prominently

(Link Profile 1 and 3). In experiments with Link Profile 4,

the advantage of enabling flexibility is less obvious. The

weakened effect of our strategy originates from the stable

link throughput of Link Profile 4, as shown in Figure 3.

Therefore, the number of optimizations are not increased by

9

TABLE 2: Link throughput profiles used in experiments.

Index
mean of
tx. time

std. of
tx. time

distribution

1 20.5 4.5 Poisson
2 40.5 6.5 Poisson
3 29.6 14.0 log-normal
4 7.3 0.5 from measurements in Figure 2

Fig. 2: Driving route and uplink throughput of Link Profile 5.
The base station is located at N. The height of the base station
antenna is 21 meters above ground level, whereas the vehicle
antenna is at approximately 1.5 meter height, mounted on the
vehicle roof. The test vehicle traversed the double loop shown
by the overlay 10 times.

The first stage is to assign specific numbers of samples

to each client so that the standard deviation is close to a

designed value. To this end, for ni , i 2 [N] and with target

standard deviation σd and condition
P N

i = 1 n i = nt ot al , the

error to be minimized is | 1
N

P N
i = 1(n i − µD)2 − σ2

d |. Here

µD =
|D |

N
since the complete dataset is distributed. The

optimization for ni does not aim for a fix solution, but for

finding a data distribution in accordance with the desired

heterogeneity on data samples.

The second stage is to assign samples of specific classes

to each client. The classes available at a client Ci is ran-

domly chosen in [C]. Therefore we have conditions: ni
c ≥

✓c · n i / |C i | if c 2 C i , otherwise ni
c = 0. Then we construct

conditions on the number of samples per client and per

class:
P N

i = 1 ni
c Nc, 8c 2 [C] and

P C
c= 1 ni

c n i , 8i 2 [N].

The target to be minimized is then nt ot al −
P N

i = 1

P C
c= 1 ni

c.

✓c controls the class imbalance in a client’s local dataset and

is gradually decreased if no solution is found. Results from

both stages ni and n i
c are rounded up to the closest integer.

5.1.2 Link Variability

The variability on link throughput of clients is controlled via

ci
t in Algorithm 3. We list four different scenarios where the

link throughput having different characteristics as shown in

Table 2, see also Figure 2. The distribution of transmission

time under these scenarios are plotted in Figure 3. All the

link profiles ci
0, . . . , ci

T are pre-generated individually for

each client i .
In experiments assuming perfect predictions on link

throughput, ci
t , . . . , ci

t + Tp r ed
are fed to the client i for de-

termining whether to stop training and upload model to

the server. To show the robustness of our algorithm, we

also add perturbations to the generated communication

tokens at each time step t and use (c̃i
t , . . . , c̃i

t + Tp r ed
) fed to

the client as imperfect predictions (Line 6 of Algorithm 3):

c̃i
t + p = ci

t + p + ei
p, where ei

p ⇠N 0, σi · p/ Tpr ed .

Fig. 3: Distribution plot of transmission time under four differ-
ent link profile in Table 2. Profile 4 is sampled from measure-
ments shown in Figure 2.

TABLE 3: Variability of computation resources for FL clients in
three scenarios

Index pm i n pm ax scale

a 10 10
1 for MNIST
2 for CIFAR10

b 5 15
c 3 17

d 5 5
1e 3 7

f 1 9

The motivation of adding perturbation to predictions

based on the time difference is that predictions for later time

steps are less reliable. When reaching the maximum predict-

ing time step, the predicted communication throughput will

exhibit an uncertainty (ei
Tp r ed

) of the same level as the link

throughput of all time (σi).

5.1.3 Dynamic Computation Resources

The dynamics of computation resources for each client

to perform learning tasks is simulated via si
t ⇠

uniform { pmin , . . . pmax } ·scale in A lgorithm 3. Unlike the

communication resource token ci
t which can change every

time step, we keep si
t steady for every 32 steps. This is to

simulate the periodic change in the total work load for a

FL client. We simulated with three different scenarios with

different range of variety as shown in Table 3.

5.2 Experiment Settings

5.2.1 Testing Strong Convexity

In our analysis, the loss evolution during local optimization

in Corollary 4.1 involves the convexity factor µ which is

related to Assumption 4.6. We conduct the following test to

get a estimated value of µ so that the aggregation weight

design is valid. We test µ in strong-convex setting, which is

a stronger requirement than PL inequality. Given the three

following strong convexity properties:

Data-driven IoT Systems: Emerging Verticals, Challenges, and Opportunities – An Edge-based View14

Pillar for future resilient Metaverse applications

Data-driven IoT Systems: Emerging Verticals, Challenges, and Opportunities – An Edge-based View15

◼ Lots of AR/VR/XR but everything else is AI/ML

◼ Training machine learning models at the edge

Task Offloading at the Edge – towards the MetaVerse

Kai Li, Yingping Cui, Weicai Li, Tiejun Lv, Xin Yuan, Shenghong Li, Wei Ni, Meryem Simsek and Falko Dressler, "When Internet of Things meets Metaverse: Convergence of Physical and Cyber Worlds," IEEE Internet of Things Journal, vol. 10 (5), pp.

4148–4173, March 2023.

Edge Computing with Deeply Integrated Learning

Data-driven IoT Systems: Emerging Verticals, Challenges, and Opportunities – An Edge-based View16

• Self-learning and adaptive
protection for the connected
world

• Automatic detection, mitigation
and remediation of threats

AI for
resilience

• Robust, secure, efficient, and
explainable AI components

• Systematic analysis, testing, and
verification of resilience in AI

Resilience
for AI

	Slide 1: Data-driven IoT Systems: Emerging Verticals, Challenges, and Opportunities – An Edge-based View
	Slide 2: From Edge to V-Edge
	Slide 3: Virtualized Edge Computing
	Slide 4: AI/ML and Virtualized Edge Computing
	Slide 5: V-Edge Architecture
	Slide 6: V-Edge Substrate for Distributed Computing at the Edge
	Slide 7: Model Splitting: Distributed Inference, Distributed Learning, and more
	Slide 8: Model Splitting
	Slide 9: Machine Learning within the V-Edge
	Slide 10: Heterogeneity: the Motivation for FL Variations
	Slide 11: Asynchronous FL
	Slide 12: Asynchronous FL with Resource Maximization
	Slide 13: Training time vs. transmission time
	Slide 14: Pillar for future resilient Metaverse applications
	Slide 15: Task Offloading at the Edge – towards the MetaVerse
	Slide 16: Edge Computing with Deeply Integrated Learning

