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V-Edge Architecture Universitat ' E
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m Logical resources from mobile users and infrastructure-based systems (e.g., edge servers co-
located with a gNB) are aggregated into clusters

m  Multiple clusters are appropriately coordinated and microservices can migrate from one cluster
to another to optimize the service location

m Resource management is done by an orchestrator, which may interwork with others, controlling
neighboring clusters, to migrate services
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V-Edge Substrate for Distributed Computing at the Edge
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Model Splitting: Distributed Inference, Distributed Learning, and more
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Model Splitting
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Machine Learning within the V-Edge
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Heterogeneity: the Motivation for FL Variations

Server

LOS
Device 1:
CPU clock: 2GHz
With GPU, RAM: 8GB =

1022 samples
Device 2:

CPU clock: 800MHz
No GPU, RAM: 2GB
800 samples

blockage
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II Non-LOS
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T Device 3:
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10 Data-driven loT Systems: Emerging Verticals, Challenges, and Opportunities — An Edge-based View

Technische '
Universitat

Berlin

Federated Learning (FL): with data
distributed across edge devices, we aim to
exploit their data and computational
capacity.

For devices to share their learned
knowledge through models to the server.

Classic FL involves strictly synchronized
model exchange, which is difficult
considering heterogeneity of:

m Data distribution
m  Computational capacity

m  Communication link throughput
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Asynchronous FL
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m By relaxing strict synchronization cycles, we allow FL devices of various capability to upload model
upon completion of their training

Server

Device 1

Device 2

Device 3

Device 4
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time
Upload complete

Download complete

Time spent on
communication

Time spent on training

Mengfan Wu, Mate Boban and Falko Dressler, "Flexible Training and Uploading Strategy for Asynchronous Federated Learning in Dynamic Environments," IEEE Transactions on Mobile Computing, vol. 23 (12), pp. 12907—12921, December 2024.
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Asynchronous FL with Resource Maximization e | E

m Assuming FL devices know/predict the throughput of their links to the server, we set a range for
training process to be acceptable: [Ein, Emax]

m Devices are aware of their training process and monitor the future link throughput within a time
span

Upload if model transmission

Action Always continue training time is minimal Upload model anyways
Local

optimization —

progress
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Training time vs. transmission time
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Pillar for future resilient Metaverse applications
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Task Offloading at the Edge — towards the MetaVerse Jﬁ?&’:ﬁ:.-i’-;f'
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m Lots of AR/VR/XR but everything else is Al/ML

m Training machine leal

Education Smart city

Real estate

Responsible High-speed data
Al communications Base station

i MEC server
wave i]

Kai Li, Yingping Cui, Weicai Li, Tiejun Lv, Xin Yuan, Shenghong Li, Wei Ni, Meryem Simsek and Falko Dressler, "When Intemet of Things meets Metaverse: Convergence of Physical and Cyber Worlds," IEEE Intemet of Things Joumal, vol. 10 (5), pp.
4148-4173, March 2023.
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Edge Computing with Deeply Integrated Learning Jﬁ?i‘:,‘:ii'-;il E
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» Self-learning and adaptive

rotection for the connected
Al for \F/)vorld

resilience » Automatic detection, mitigation
and remediation of threats

Resilience - Robust, secure, efficient, and
for Al explainable Al components

» Systematic analysis, testing, and
verification of resilience in Al
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